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ABSTRACT

One of the main goals of unstructured mesh adaptation algorithms is to achieve better discretization error with a
smaller number of mesh elements. For many problems, the discretization error can be bounded from above by an
interpolation error. The main purpose of this paper is to analyze the interpolation error in Hessian-based mesh

adaptation algorithms with a control of adaptivity.
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1. INTRODUCTION

One of the main goals of unstructured mesh adapta-
tion algorithms is to achieve better accuracy of a so-
lution with a smaller number of mesh elements. For
problems with anisotropic solutions, the optimal adap-
tive mesh must contain anisotropic elements. One of
the interesting results of the approximation theory is
that elements with obtuse and acute angles stretched
along the direction of minimal second derivative of a
solution may be the best elements for minimizing an
interpolation error [1, 2]. For many problems, the in-
terpolation error provides an upper bound for a dis-
cretization error. The main purpose of this paper is to
analyze the interpolation error in metric-based mesh
adaptation algorithms.

One way to generate a metric is to use the Hessian
(the matrix of second derivatives) recovered from a
computed solution. Different methods of Hessian re-
covery have been studied in [3, 4, 5, 6, 7]. It has been
shown in [3] that the adaptive meshes quasi-uniform in
the Hessian-based metric result in optimal estimates
for the interpolation error.

The optimal adaptive mesh may not be appropriate

for some engineering applications due to strong size-
disproportionality of neighboring mesh elements. This
disproportionality may increase the LBB constant in
mixed finite element discretizations of the Stokes prob-
lem [8]. This constant is used to evaluate the difference
between the approximation and interpolation errors in
the pressure. The more this difference, the less accu-
rate may be the Hessian-based approach for resolving
pressure singularities. The solution for some of the
problems mentioned above is to modify (for example,
to smooth) the Hessian-based metric. A properly cho-
sen modification which preserves the main properties
of the Hessian-based metric defines success of many en-
gineering simulations. In this paper, we develop new
error estimates which allow us to understand effects
of different metric modifications on the interpolation
error.

A modified metric allows us to enforce the mesh adap-
tation in regions of physical interest. Similar objec-
tives are typical for the goal oriented adaptive meth-
ods [9]. The main advantage of metric-based methods
is a simple control of metric properties and properties
of resulting meshes.

The paper contents is as follows. In Section 2, we in-



troduce the notion of a quasi-optimal mesh. In Section
3, we describe a control strategy for mesh generation
algorithms based on a metric induced by the Hessian
of a discrete solution. In Section 4, we prove the er-
ror estimates for the proposed controlled strategy. In
Section 5, we consider a numerical example confirming
the theoretical estimates.

2. QUASI-OPTIMAL MESHES

Let Q € R® be a polyhedral domain and Q" be a
conformal tetrahedrization of €:

N(Qp)
Qh = LJ €4,

i=1
where N'(Q}) denotes the number of mesh elements.

Let C*(D) be the space of functions over domain D C
Q with continuous partial derivatives up to the order .
We shall use notation P; (Q") for the space of functions
continuous in {2 and linear over each mesh element.
Let Por be a projector onto this space. An example
of such a projector is the linear interpolation operator.
The error estimates presented in this paper are given
in space Lo with the norm

llull oo (@) = sup u(z)]-
zeQ

Definition 1 Let u € C°(Q) and Pqr be given. The
mesh Qgpt(NT, u) consisting of at most Nr elements
is called optimal if it is a solution of the optimization
problem

fopt(NT, u) = arg  min

— . (1
i fu=Pontl - (1)

The existence of the optimal mesh has been analyzed
in [1, 10, 11] for triangular meshes. In [1, 11], the ex-
istence of the optimal triangulation was conditioned
by the existence of a curvilinear coordinate transfor-
mation resulting in the canonic Hessian. The different
analysis based on continuity of the Lo,-norm with re-
spect to coordinates of mesh nodes has been developed
in [10].

The main purpose of this paper is the theoretical anal-
ysis of one of the solution strategies for problem (1).
This strategy results in a Hessian-based mesh adap-
tation method. The optimization problem is reformu-
lated as the problem of generating a mesh which is
quasi-uniform in a metric space generated by the Hes-
sian of Pgnu.

Let H be the Hessian of function u and H” be a
discrete Hessian recovered from the discrete solution
u? = Pgru. Since the Hessian H” is symmetric, the

following spectral decomposition is possible:

A 0 0
H=WTA"W, A"=| 0 Xx» 0 |,
0 0 s

where W is an orthonormal matrix and A;, ¢ =1, 2,3,
are eigenvalues of H". Using the last formula, we de-
fine the following metric:

h TAh h il 00
|[H*| = WIAY W, A% =] 0 |X| 0 |.(2)
0 0 |Ag

Hereafter, we shall assume that the metric |H"| is non-
singular. In practice, zero eigenvalues are replaced by
a small positive constant.

There exist several criteria in the literature for check-
ing that a tetrahedron e € Q" is quasi-uniform in a
metric G. In this paper we use the criterion proposed
in [3, 5, 12]. Let |e|g be the volume of tetrahedron e
in metric G and |00e|g be the total length of tetrahe-
dron edges in metric G. We define a number Q(Q")
as follows:

Q(Q") = min Q(e)

eeNh

where

_ a5 lela |00 e|c
aw-ovagiler (). @

3/ 12|

Q"¢ =) lel¢ and A" = TNy

eeQh

It is obvious that |Q"|¢ is the volume of the computa-
tional domain in metric G and h™* is the average length
of a tetrahedron edge. Thus, the number Q(Q") de-
pends on the metric and the number of mesh elements.
The last factor in (3) controls the size of the mesh el-
ement. The function F'(z) can be an arbitrary contin-
uous function, 0 < F(z) < 1, with the only maximum
at point 1, F(1) = 1. The second factor controls the
shape of the mesh element. The first factor scales the
value of (e) to interval [0, 1]. Thus, the maximal
value of Q(Q") is attained when all mesh elements are
equilateral (in metric G) tetrahedra with edge length
h*. Later in this paper, we shall refer to Q(e) and
Q(Q") as the element quality and mesh quality, re-
spectively. In addition, we shall refer to a mesh quasi-
uniform in metric G as the G-quasi-uniform mesh.

For complex geometries, the mesh quality of optimal
meshes is usually less than 1. In the process of mesh
generation, we require Q(Q") ~ Qo where Qo ~ 0.2. It
has been shown in [3, 13] that the resulting meshes are
quasi-optimal, i.e. they are approximate solutions of
problem (1). In other words, the quasi-optimal meshes
still result in the optimal error estimates.



3. CONTROL OF ADAPTIVITY

As it was mentioned in the introduction, the
quasi-optimal mesh may not be appropriate for
some engineering applications due to strong size-
disproportionality of neighboring mesh elements. The
solution proposed by many researchers is either to
smooth the mesh or to modify the tensor metric.

The second approach is computationally more effec-
tive, since the majority of mesh generation algorithms
perform better when the metric is smooth. In context
of the Hessian-based metric, the adaptation process
may be controlled by modifying eigenvalues in spectral
decomposition (2). Since the actual size of a mesh ele-
ment is implicitly controlled via the third factor, F'(-),
in the element quality definition, we may use local cri-
teria for modifying the metric. In this paper, we ana-
lyze theoretically the effect of such a control strategy
on the interpolation error. As examples of particu-
lar control strategies, we shall consider the following
modifications of entries of A™:

i = arg A 3%, A, i=1,2,3, (4)
and ~
Ai = hw(x), 1=1,2,3, (5)

where w(z) > 0 is a weight function.

The first criterion (4) results in isotropic meshes
adapted to the maximal solution curvature. These
meshes are similar to hierarchical locally refined
meshes whose refinement criterion is based on the
equidistribution of the Loo-norm of a posteriori es-
timated error. The second criterion allows us to fo-
cus the mesh adaptation in regions of physical interest
(w > 1) and/or to relax an undesirable mesh refine-
ment (w < 1).

Similar objectives are typical for the goal oriented
adaptive methods [9]. The main advantage of our ap-
proach is its easy implementation in black-box mesh
generation methods based on the notion of a metric.
The theoretical estimates derived in the next section
will allow us to understand effects of different control
strategies on the interpolation error.

We denote by H" the modified Hessian:

- - - AMo00
B =w"A'w, A'=10 X 0 |, (6
0 0 X

and by |H"| the associated metric, |[H"| = W' |A"|W.

4. ERROR ESTIMATES

The following notations are used in this section. The
continuous Hessian of function « is denoted by H. The

discrete Hessian H" recovered from the discrete solu-
tion u” is assumed to be constant inside each mesh ele-
ment. We denote by Ha its value inside a tetrahedron
A. Let H be the continuous modified Hessian and H"
defined in (6) be its piecewise constant approximation.
We denote by Ha the value of H" inside a tetrahe-
dron A. Note that in practice the discrete Hessian is
piecewise linear and continuous rather than piecewise
constant. We consider here the latter case for the sake
of simplicity of the presentation. Finally, we shall use
notation C(z), C1(z) and C2(z) for generic constants
depending on parameter z and independent of other
parameters.

The following spectral decompositions hold:
Ha=WAAAWa and Ha=WAKAWa

where Aa and Aa are diagonal matrices. Similar de-
compositions can be written for continuous metrics H
and H. Let A(z) and A(z) be the corresponding eigen-
matrices. We assume that the eigenvalues are ordered
in such a way that |[A1(A)] < [A2(A)] < |[A3(A)|. Let
p(A) denote the spectral radius of A and Cond(A) be
the condition number of A.

The following two lemmas proved in [3] play the im-

portant role in our analysis.

Lemma 1 Let A be a tetrahedron and uz € P2(A) be
a quadratic function with the nonsingular Hessian H»
such that Hy = WEAsWs. Then

~ 2 R
C’lAl3 < ||U2 - PA’LL2||L°°(A) < 7“2/2, (7)

where T is the circumradius of tetrahedron A which is
the image of A under the transformation & = R(z),
R = /|A2|Wa2, reducing Ha to the canonical form

Lemma 2 Let G, G? be two constant metrics defined
on a tetrahedron A such that,

|G]1)s - G}%sl S €, b,s= 1’273-

Let Qg1(A) and Qg2(A) be the tetrahedron qualities
in metrics G* and G?, respectively, and

QGl (A) 2 QO)
Then, for a sufficiently small € > 0,

Qa2(A) > Qo - (1— Ce/Mi(Gh))°.

Let Qgpt be a solution of the optimization problem (1).
The following theorem holds.



Theorem 1 Let u € C*(Q), the Hessians H and H
be nonsingular in 2, and Pqr be the interpolation op-
erator. Let Q" be the |H"|-quasi-uniform mesh such
that Q(Qh) > Qo. Furthermore, let for any tetrahe-
dron A € Qgpt and the tetrahedron A* € Q" where
llu — Parullr. () s attained the following estimates
hold:

1Hps = (Ha)ps[|Loo (2) < aaAi(|Hal),
1Hps = (Ha)psl| Lo (a) < gari(|Hal)l,

for0 < ga <g<1andp,s=1,23. If Ha+ is an
indefinite tensor, we assume additionally that

Cond(Aa+ ]XZL) ga+ < gq. (9)
Then
llu—Pontllo @) < a(H, H)lu=Pgn ull Lo, @) (10)

where

2/3
N A-1 |Q||1§|

Conditions (8) may be treated as requirements of rel-
atively small variations of Hessians H and H on any
tetrahedron of the optimal mesh Qf,‘pt and the worst
tetrahedron of the |H"|-quasi-uniform mesh Q". For
instance, the conditions are satisfied for sufficiently re-
fined meshes and functions » such that A1 (|H|) > C.
It is pertinent to note that the last inequality holds
for a wide set of anisotropic functions.

Note that Cond(Aa:Ax}) = |A3/A\| and
Cond(Aa+ARL) = 1 for control strategies given
by (4) and (5), respectively. We think that condition
(9) can be dropped out using a more sophisticated
analysis than that presented below.

Proof . We begin by proving (10) for a piecewise
quadratic function uy defined by:

1
w(z) = 3 (Haz,o) + (b, 2) +d (1)

where b € ®% and d are such that

Pau = Paus. (12)
Here Pa is the restriction of Pgr to tetrahedron A.
The last equation is equivalent to the system of four
linear equations at tetrahedron vertices:
i=1,2,3,4.

u2(ai) = u(ai),

Since this system is non-singular, (12) has a unique
solution.

Let us estimate the circumradius 7 for tetrahedron A
which is the image of A* € Q" under the transforma-
tion described in Lemma 1. The spectral decomposi-
tion implies that the transformation R from Lemma 1
can be rewritten as follows:
R=AYWar = AY2ARYPR, R=AK{’Wa-,

where R reduces H A+ to the canonical form. Let 7 be
the circumradius of A = R(A*). Note that

Q(A™) > Qo.
The definition of the element quality implies that
|A™] 5 |00A™] 5
4 A [Hax|
2————=— > Fl——=— 1> .
6\/_|68A* ?g > Q()7 6h* - QO

axl

The first inequality implies that the tetrahedron A is
close to the equilateral one. The definition of func-
tion F implies that the tetrahedron perimeter [9DA|
is bounded from above and below by 6h*. Thus, we
get the following estimate for circumradius 7

C1(Qo,q) h* <7 < C2(Qo,q) h".

Note that A is obtained by stretching of tetrahedron
A. Since the tetrahedron A is quasi-equilateral, the
circumradius 7 of A is bounded from above:

P < Cp(AYIARY?) 7.
Now, Lemma 1 gives the following estimate:
[z = Pasusllro, avy < #2/2 < C p(AarARL)F.

The estimate for the circumradius 7, definition of h*
and inequalities (8) give the following upper bound:

2
- 9] 3
[|lue — Paruz||Lo ax) < a(H, H) (| ]\L‘Hl) . (13)
T

Let A be an arbitrary tetrahedron from the optimal
triangulation Qf,‘pt. Applying Lemma 1, we get

2
magk uz(z) — Paus(@)] > Ol

Due to (8) and Lemma 2, there exists a constant C(q)
such that
|Alra 2 C(@)|A]ja -

Recall that mesh Qf,‘pt is quasi-uniform in metric |H]|.
Therefore,

A%
Q
S
=
I
W
=
=

lluz = Panr_ uzllze (o)

WV,
Q
-
22
RE
N—r

Combining (13) and (14), we prove the statement of
the theorem for the quadratic function uz. In order to



complete the proof of the theorem, we have to show
that the quadratic function w2 satisfies the following
inequalities:

C1(q)|luz — Pauz||L o (a) < llu—Paullp,ay (15)
and
llu — Paullr o (a) < Ca(@)llue — Pauz|lr,a). (16)

In order to verify (15) and (16), we take advantage of
the multipoint Taylor formula [14, 15]. Let

E = u(z 2 au(z)
= %Zl H(ci)(x — as), (x — as)) ¢,
E;, = wus(z)— Paus(z)

(Ha(z — ai), (x — ai)) ¢

I
N =

i=1

where ¢; is the P; basis function at vertex a; and ¢; =
ci(x,a;) is some point in A. Let us define

er—t

E2,mod =

Z |[Hal(z — ai), (x — ai)) ¢s-

The first assumption in (8) implies that

|E—E2| < qA\/_l)\l HA)lZ((x a’L) a”-))qbz
< Y3 S (al(o - 0, (2 - a)

i=1
< qaV3IE2modll Lo (a)-

Recall that the transformations reducing Ha and |HAa |
to canonical forms are identical. Since the image of
A€ Qgpt under the above transformation is a quasi-
equilateral tetrahedron, the lower estimate in Lemma
1 can be replaced by C#2. Thus, we have

1E2,modll 10 (a) < CllE2I1 o (a) (17)

for both definite and indefinite tensors Ha where C is
a constant independent of A.

The case of A* € Q" is more difficult since the im-
age of A* is no longer a quasi-equilateral tetrahedron.
Applying Lemma 1, we get

|E2,modll Lo ) < f2/2
< |A|2/3|| Bellzee o
< CCond(As-AZY) |1 Ballo_ .

Now, the theorem assumptions (8) and (9) imply

1Bz ca) < (14 CaV3) 1Bsllr.a):

For sufficiently small ¢, we get the lower estimate:
(1-CavB) 1B llLe o) < B ma):

This proves inequalities (15), (16) and the statement
of the theorem. a

The important consequence of Theorem 1 is the opti-
mal error estimate for the control strategy defined by
(5). Let Ls, () be the weighted space with the norm

llull Ly, (@) = sup |w(z)u(z)],
z€N
where w(z) > 0 is a weight function.

Corollary 1 Let Hp = waHa and w < 1. Then, the
following optimal estimate holds:

llu = Parullre, o) < C(Qo, d)llu —Pan ullzo @)-

Proof . Note that Aa = waAa. Then, for the worst
tetrahedron A* € Q" we use (16) to get the following
chain of estimates:

llu = Parullrg (a) < war|lu—Paru|lL.ax

IN A

Ca(q)war||ug — Paruz|| Lo, a*)
Ca(q)waxp(Aa-AZL)7
Ca(q)7,

INA

The statement of the corollary follows from the esti-
mate on the circumradius 7, the definition of | 7/,

905 = [ aer(]) < [ V/aHTHD = 19)m.
Q Q

and estimates (14), (15). O

5. NUMERICAL EXAMPLE

In this section, we consider the test example from [16,
17] and explain the results of numerical experiments
from the theoretical viewpoint. Let u be the solution
of the homogeneous Dirichlet boundary value problem
for the Poisson equation in the domain © with one
reentrant corner, Q = (0,1)%\ [0,0.5]:

—Au=f

where f(z) is a singular right hand side, f(z) =
1/|z — zo|, and zo = (0.5,0.5,0.5). Properties of solu-
tion u are investigated in [18]. The solution possesses
weak anisotropic edge singularities and a strong point
singularity at the reentrant corner zo due to the sin-
gular right hand side.
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Figure 3: The trace of the isotropic mesh.

Figure 2: The trace of the quasi-optimal mesh.
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Figure 4: The trace of the weighted mesh.
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